Engineering Mathematics C
Integration by Parts
Formula
\[\int u {dv \over{dx}} \: dx = uv - \int {du \over {dx}}v \: dx\]Ex.
\[∫xe^xdx\]if u = x and ${dv \over dx} = e^xdx$
Then: $v = ∫e^x$ and ${du\over dx} = u’$
The trick to Pick u and v
L.I.A.T.E
L: logs ($\log{x}$, $\log{2x}$, $\log_{10}{x}$)
I: inverse trig ($\arctan{x}$, $\arcsin{2x}$)
A: Algebraic ($x^2$, $(x-1)$, $x^6$, $\sqrt{x}$)
T: Trig Functions ($\sin{x}$, $\cos{3x}$)
E: Exponentials ($ex$, $e − 3x$, $2ex + 4$)
Where u is the first type you come across in the expression, and v is the second.